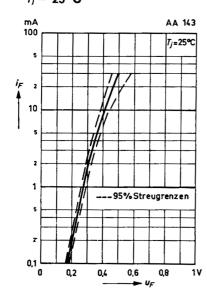

Ausgleichs- und Interpolationsrechnung I

1. Bestimmen Sie mittels linearer Regression den Innenwiderstand R, der Transformatorquelle, wenn folgende Messwerte vorliegen:

$U_{_{sek}}\left[\mathrm{V} ight]$	I_{sek} [mA]
9.43	40.78
9.38	57.0
9.27	101.4
9.165	141.45
9.05	198.65
8.90	251.03
8.52	405.8

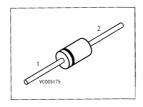


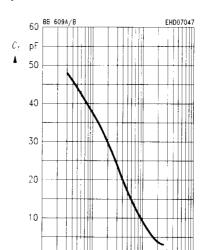
Beurteilen Sie ferner die Güte der so erhaltenen Ausgleichsfunktion!

- 2. Eine Ge-Goldraht-Diode AA143 wird im Katalog mit der unten gezeigten Kennlinie spezifiziert. Bestimmen Sie die Parameter I_s und n für das Shockley-Modell mit Hilfe von 4 Werten (I_p bei äquidistanten $U_p=0.2V,...,0.5V$), die Sie aus dem Diagramm entnehmen.
- 3. Bestimmen Sie mit Hilfe einer geeigneten Regressionsfunktion eine einfache, stetige Funktion, die den Kapazitätsverlauf der Sperrschichtkapazität C_s für die Diode BB609A beschreibt. Ausgangslage bilden die Werte für C_s bei - U_p ={0.5, 1, 2, 5, 10}V.
- 4. Analog Aufgabe 3, aber Benutzen Sie als Grundfunktion die allgemeine Formel (Potenzartige Ausgleichsfunktion) für die Sperrschichtkapazität der Art: $C_S = \frac{C_0}{U_s^m}$. Bestimmen Sie die

Parameter C_0 und den Gradationsexponenten m optimal nach der Methode der kleinsten Fehlerquadrate. Vergleich Sie Ihr Resultat mit den Werten $C_0=34.2pF$, m=0.415). Was stellen Sie fest?

Durchlaßkennlinie $T_i = 25 \,{}^{\circ}\text{C}$




BB 609 A

BB 609 B

SIEMENS Silicon Variable Capacitance Diodes

Diode capacitance $C_T = f(V_R)$ f = 1 MHz

10⁰

Siemens Datenbuch Einzelhalbleiter 12.1991

Datenbuch Dioden 1971/72

ITT Intermetall